O Timbreflex
4
Projeto dos transformadores de saída
Documento que iniciou as pesquisas de Eduardo de Lima
para os transformadores de saída.
http://www.alinden.mynetcologne.de/mc/amplifiers.pdf
Using Windings Of Output Transformer To Provide Negative Feedback To Cathode Of A Single-ended Output Stage
http://livinginthepast-audioweb.co.uk/index.php?p=feedbackwindings
Purpose: to improve
output speaker damping in order to reduce loudspeaker bass resonance ('boominess')
that is normally suppressed by closed loop negative feedback coupled with high
open loop gain. This does not exist in 'minimalist' single-ended valve
amplifiers of few valves, low gain and having little or no negative feedback at
all.
Test Circuit
Output valve: KT66 as
triode
Driver valve: EF36
pentode (gain = 40dB [x100])
Transformer: DB1087
(A, B); modified DB1090 (C)
Using Windings Of Output Transformer To Provide Negative Feedback To Cathode Of
A Single-ended Output Stage
Purpose: to improve
output speaker damping in order to reduce loudspeaker bass resonance ('boominess')
that is normally suppressed by closed loop negative feedback coupled with high
open loop gain. This does not exist in 'minimalist' single-ended valve
amplifiers of few valves, low gain and having little or no negative feedback at
all.
Test Circuit
Output valve: KT66 as
triode
Driver valve: EF36
pentode (gain = 40dB [x100])
Transformer: DB1087
(A, B); modified DB1090 (C)
|
Electrical Model To Emulate Loudspeaker Resonance
DC resistance: 7.6Ω
|
Performance Of Test Circuit Into The Electrical Model
|
'A': no feedback, Ra = 5,000Ω
'B': using 16Ω speaker
winding, Ra = 5000Ω
'C': using 1300Ω section
of primary, Ra = 3700Ω
Results
It's interesting that the resonance with no feedback is still quite low at only
+3dBV, so some damping is evident, mostly due to the low resistance of the
speaker winding, but also because the Ra increases in proportion and so the
power goes down. This is not a complete picture of course, since for a real
speaker the effect is exacerbated by mechanical resonance of the speaker cone,
resulting in exagerated sound output at the resonant frequency.
Best results were obtained using the full (16W) speaker winding in series with
the cathode ('B'). This reduced the resonance peak to just +1dBV. Surprisingly,
using a 1300Ω section
of the primary in its place was worse, producing +2dBV ('C'), not very different
from 'A'!
Total Voltage Gain Of Output Stage
I.e. input grid to 8Ω speaker
tap:
|
i/p sensitivity for max. o/p (10W): |
Note the 1300Ω winding
added an extra 37Ω to
the cathode circuit, which of course could not be bypassed, and so this mostly
accounted for the reduced gain for 'C', in addition to the feedback. Of course
the speaker winding option ('B') has a negligible impedance by comparison.
My personal conclusion is that option 'B' offers the best compromise (and
doesn't involve hacking the transformer primary!). I tried the amp with a small,
very simple, closed-box 'music-centre' type speaker and couldn't discern very
much in the way of resonance.
To hear is to forget
To see is to remember
To do is to learn
To learn is to know
To know is to grow
To grow is to give
To give is to live
Anon
Knowing is not enough; we must apply.
Willing is not enough; we must do.
Goethe
LM3 (Low Mu Triode with Higher Raw Efficiency Emulator – LMTHREE)
Esquemático dos quatro tipos de enrolamentos dos transformadores Maggiore 100
Cinza =ferragem tipo EI-50 com empilhamento de 50mm.
Enrolamentos rosa fio #26 = primário 1 (placa) e 26 (fonte). Enrolamentos vide tabela.
Derivação do primário = 23 (para grade auxiliar).
Enrolamento verde fio #31 = realimentação do catodo 11 e 12.
Enrolamentos azuis fio #24 = secundário três bobinas em paralelo 7+15+19 e 8+16+20
38 voltas fio cada uma.
Bolinhas dentro dos enrolamentos= início de espiralagem.
De acordo com o que foi explicado em http://www.novacon.com.br/audioctrasnf2.htm termos as seguintes RELAÇÕES ENTRE ESPIRAS nos quatro tipos de transformadores usados no Maggiore 100:
Tipo 1 = 3.500 x 2.5 = 1400 ∴ √1400 = 37.4
Tipo 2 = 4.900 x 2.5 = 1960 ∴ √1960 = 44.27
Tipo 3 = 2.500 x 2.5 = 1000 ∴ √1000 = 31.6
Tipo 4 = 5.900 x 2.5 = 2360 ∴ √2360 = 48.57
Desta forma teremos como ESPIRAS primário, secundário e terciário:
Todos os Secundários fixados em 3 x 38 espiras fio# 24
Primários: fio #26
Tipo 1 = 37.4 x 38 = 1421 (9 camadas de 158 espiras)
Tipo 2 = 44.27 x 38 = 1682 (9 camadas de 186 espiras)
Tipo 3 = 31.6 x 38 = 1200 (9 camadas de 134 espiras)
Tipo 4 = 48.57 x 38 = 1846 (9 camadas de 205 espiras)
Derivação dos primários a contar da linha de alimentação:
Ponto 23.
Tipo 1 = 2ª camada de 158 espiras (316ª espira)
Tipo 2 = 2ª camada de 186 espiras ( 372ª espira)
Tipo 3 = 2ª camada de 134 espiras ( 268ª espira)
Tipo 4 = 2ª camada de 205 espiras ( 410ª espira)
Terciários: fio #26
Ligação ao catodo: Ponto 12
Tipo 1 = 158 espiras
Tipo 2 = 186 espiras
Tipo 3 = 134 espiras
Tipo 4 = 205 espiras
Placa da válvula: Ponto 1.
Alimentação +B: Ponto 26 .
Distribuição dos enrolamentos
XXXXXXXXXXXXXXX